See recent publications from the EVO NANO project below:

2020

  • Tsompanas, M.-A., Bull, L., Adamatzky, A., Balaz, I. Utilizing Differential Evolution into optimizing targeted cancer treatments.
    (arXiv)   arXiv:2003.11623v1
  • Tsompanas, M.-A., Bull, L., Adamatzky, A., Balaz, I. Novelty search employed into the development of cancer treatment simulations. Informatics in Medicine Unlocked, 19:100347
    (ScienceDirect)   https://doi.org/10.1016/j.imu.2020.100347
  • Stillman, N., Kovacevic, M., Balaz, I., Hauert S. In Silico Modelling of Cancer Nanomedicine, Across Scales and Transport Barriers. npj Computational Materials (6)92
    (Nature)   https://doi.org/10.1038/s41524-020-00366-8
  • Gener et al. Zileuton (TM) loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells. Nanomedicine NB&M, 24:102106
    (ScienceDirect)   https://doi.org/10.1016/j.nano.2019.102106
  • Gener et al. The potential of nanomedicine to alter cancer stem cells dynamics: The impact of extracellular vesicles. Future Medicine, accepted
  • Balaz I., Petric T., Kovacevic M., Tsompanas, M.-A., Stillman, N. Harnessing Adaptive Novelty for Automated Generation of Cancer Treatments. submitted

  • Kovacevic M., Balaz I., Marson D., Laurini E., Jovic B. Mixed-monolayer functionalized gold nanoparticles for cancer treatment: atomistic molecular dynamics simulations study. submitted

  • Davila, S., Cacheux, J., Rodríguez, I. Tumour microvessel-on-chip fabrication for in vitro modelling of nanomedicine transport. near submisssion

  • McCormick, S.,  Stillman, N., Hockley, M., Perriman, A., Hauert, S. Measuring nanoparticle penetration through a tissue-mimetic chip. submitted
  • Stillman, N., Balaz, I., Kovacevic, M., Rashti, S., Lafond, S., Tsompanas, M.-A., Adamatzky, A., Hauert, S. EVONANO: Multi-scale computational framework for the automatic design of nanomedicine. near submission

2019

  • Preen, R. J., Bull, L., & Adamatzky, A. Towards an evolvable cancer treatment simulator. BioSystems, 182, 1-7
    (arXiv)   https://doi.org/10.1016/j.biosystems.2019.05.005
  • Tsompanas, M.-A., Bull, L., Adamatzky, A., Balaz, I. Haploid-Diploid Evolution: Nature’s Memetic Algorithm
    (arXiv)   arXiv:1911.07302v1
  • Molins, P., Stillman, N., Hauert, S. Trail Formation using Large Swarms of Minimal Robots. SAC, 946-952
    (T&FO)   https://doi.org/10.1080/01969722.2019.1677336
  • Gener et al. Pivotal Role of AKT2 during Dynamic Phenotypic Change of Breast Cancer Stem Cells. Cancers (Basel), 11(8):1058
    (MDPI)   https://doi.org/10.3390/cancers11081058


This project has received funding from the European Union's Horizon 2020 FET Open programme under grant agreement. No. 800983.